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For robots to follow instructions from people, theymust be able to connect the rich semantic information
in human vocabulary, e.g. “can you get me the pink stu�ed whale?” to their sensory observations and
actions. This brings up a notably di�cult challenge for robots: while robot learning approaches allow
robots to learn many di�erent behaviors from �rst-hand experience, it is impractical for robots to have
�rst-hand experiences that span all of this semantic information. Wewould like a robot’s policy to be able
to perceive and pick up the pink stu�ed whale, even if it has never seen any data interacting with a stu�ed
whale before. Fortunately, static data on the internet has vast semantic information, and this information
is captured in pre-trained vision-language models. In this paper, we study whether we can interface robot
policies with these pre-trained models, with the aim of allowing robots to complete instructions involv-
ing object categories that the robot has never seen �rst-hand. We develop a simple approach, which we
call Manipulation of Open-World Objects (MOO), which leverages a pre-trained vision-language model to
extract object-identifying information from the language command and image, and conditions the robot
policy on the current image, the instruction, and the extracted object information. In a variety of exper-
iments on a real mobile manipulator, we �nd that MOO generalizes zero-shot to a wide range of novel
object categories and environments. In addition, we show how MOO generalizes to other, non-language-
based input modalities to specify the object of interest such as �nger pointing, and how it can be further
extended to enable open-world navigation andmanipulation. The project’s website and evaluation videos
can be found at https://robot-moo.github.io/

1. Introduction
For a robot to be able to follow instructions from
people, it must cope with the vast variety of human
vocabulary, much of which may refer to objects that
the robot has never interacted with �rst-hand. For
example, consider the scenario where a robot has
never seen or interacted with a plush animal from
its own camera, and it is asked, “can you get me

the pink stu�ed whale?” How can the robot com-
plete the task? While the robot has never interacted
with this object category before, the internet and
other data sources cover a much wider set of objects
and object attributes than the robot has encountered
in its own �rst-hand experience. In this paper, we
study whether robots can tap into the rich seman-
tic knowledge captured in such static datasets, in
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Figure 1: Overview of our method: Manipulation of Open-World Objects (MOO). We train a language-conditioned
policy conditioned on object localizations from a frozen vision-language model (VLM). The policy is trained on
demonstrations spanning a diverse set of 106 objects utilizing object-centric representations generated by a VLM,
enabling the policy to generalize to novel objects and object localizations produced from modalities unseen during
training.
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combination with the robot’s own experience, to be
able to complete manipulation tasks involving novel
object categories.

Computer vision and natural language models can
capture the rich semantic information contained in
static datasets. Indeed, composing modules for per-
ception, planning, and control in robotics pipelines
is a long-standing approach to robotics [1, 2, 3],
allowing robots to perform tasks with a wide set
of objects [4]. However, these pipelines are no-
tably brittle, since the success of latter motor con-
trol modules relies on precise object localization.
Furthermore, these approaches are often restricted
to a closed set of object categories enumerated in
the object detector’s training set. On the other
hand, several prior works have trained neural net-
work policies with pre-trained image representa-
tions [5, 6, 7, 8] and pre-trained language instruc-
tion embeddings [9, 10, 11, 12]. While this form
of vanilla pre-training can improve e�ciency and
generalization, it does not provide a mechanism for
robots to ground and manipulate novel semantic con-
cepts, e.g. unseen object categories referenced in the
language instruction. This is because the language
representation of this new object category will be
out-of-distribution to the policy and remains discon-
nected with the robot’s perceptual representation.
This leads to a crossroad — some approaches can
conceivably generalize to many object categories but
rely on fragile pipelines; others are less brittle but
cannot generalize to new semantic object categories.

To allow robots to generalize to new seman-
tic concepts, we speci�cally choose to leverage
open-vocabulary pre-trained vision-language mod-
els (VLMs), rather than models pre-trained on one
modality alone. Such models capture the rich infor-
mation contained in diverse static datasets, while
grounding the semantic linguistic concepts into a
perceptual representation that can be directly con-
nected to the robot’s observations. Our goal is to
combine this rich semantic information with diverse
physical experiences on the robot to obtain a policy
that generalizes to a broad set of language instruc-
tions, which involve both semantically and physi-
cally novel objects. Crucially, rather than using the
pre-trained model for precise state estimation in its
entirety (akin to pipelined approaches), we only use
the VLM to coarsely identify the relevant objects
in the image, while allowing an end-to-end trained
policy to use this identifying information along with

the original image observation to perform the task.
More speci�cally, our system receives a language in-
struction from a human and uses a VLM to identify
the (x, y) image coordinates of all objects in the in-
struction. Along with the image and the instruction,
the (x, y) coordinates of the objects are fed into our
manipulation policy allowing it to ground the natu-
ral language to objects and know which objects to act
upon without seeing any demonstrations with those
objects. The VLM is frozen throughout all of our
training, and the policy is trained with the real VLM
detector in the loop to prevent the brittleness that
can plague prior pipelined approaches. The main
contribution of this paper is a �exible approach for
open-world object manipulation that interfaces pol-
icy learning with pre-trained vision-language mod-
els. The pre-trained models are trained on massive
static image and language data that far exceeds the
robot’s own experience and provides the semantic
knowledge needed to localize objects referenced in
language instructions. The robot’s policy is trained,
with these coarse localizations provided as auxiliary
information, to perform primitive skills using demon-
stration data covering a more modest yet still physi-
cally diverse set of 106 training objects. The compo-
sition of the pre-trained vision-language model and
the control policy leads to an overarching language-
conditioned policy that can complete commands that
refer to novel semantic categories. When evaluated
on completing instructions with unseen object cat-
egories on a real robotic manipulator, our exper-
iments indicate that our approach is signi�cantly
more successful than recent robot learning methods.
Beyond verbal object descriptions, we also �nd that
the trained policy can be easily combined with other
means of communicating desired objects, e.g. physi-
cally pointing at an object and inferring the object
description using a VLM, showing a generic image
of the object of interest or using a simple GUI. Fi-
nally, our experiments further show that our method
can be integrated with an open-vocabulary object
navigation model called Clip-on-Wheels (CoW), to
complete mobile manipulation tasks involving novel
object categories. Throughout this paper, we refer to
our approach as Manipulation of Open-vocabulary
Objects (MOO) and the integrated mobile manipula-
tion system as CoW-MOO.
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2. Related Work
Leveraging Pre-Trained Models in Robotic
Learning Using o�-the-shelf vision, speech, or
language models is a long-standing approach in
robotics [13, 14, 10]. Modern pre-trained vision and
language models have improved substantially over
older models, and have played an increasing role in
robotics research. A large body of prior work has
trained policies on top of frozen or �ne-tuned visual
representations [5, 15, 6, 16, 17, 18, 19, 7, 8, 20, 21],
while other works have leveraged pre-trained lan-
guage models [22, 23, 9, 10, 11, 24, 25, 12]. Un-
like these prior works, we aim to leverage vision-
language models that ground language in visual ob-
servations. Our use of vision-language models en-
ables generalization to novel semantic object cate-
gories, which cannot be achieved by using vision
models or language models individually.

Generalization in Robotic Learning A number
of recent works have studied how robots can com-
plete novel language instructions [26, 22, 23, 9, 10, 11,
27, 28, 24], typically focusing on instructions with
novel combinations of words, i.e. compositional gen-
eralization, or instructions with novel ways to de-
scribe previously-seen objects and behaviors. Our
work focuses on how robots can complete instruc-
tions with entirely new words that refer to objects
that were not seen in the robot’s demonstration
dataset. Other research has studied how robot behav-
iors like grasping and pick-and-place can be applied
to unseen objects [29, 30, 31, 32, 33, 34, 35, 36, 37],
focusing on generalization to visual or physical at-
tributes. Our experimental settings require visual
and physical object generalization but also require
semantic object generalization. That is, unlike these
prior works, the robot must be able to ground a
description of a previously-unseen object category.
Works such as CLIPort [38] have shown general-
ization to unseen semantic categories and attributes.
We aim to achieve such generalization without being
restricted to table-top pick-and-place and without
requiring a calibrated camera.

Open-World Object Detection in Computer Vi-
sion Historically, object-detection methods have
been restricted to a �xed category map covering a
limited set of objects [39, 40, 41, 42]. These methods
work well for the object categories on which they are
trained, but have no knowledge of objects outside
their limited vocabulary. Recently, a new wave of

object detectors have emerged that aim to go beyond
simple closed-vocabulary tasks by replacing the �xed
one-hot category prediction with a shared image-
language embedding space that can be used to an-
swer open-vocabulary object queries [43, 44, 45, 46].
Typically these methods rely on internet-scale data
in the form of pairs of image and associated descrip-
tive text to learn the grounding of natural language
to objects. Various methods have been employed to
then extract object localization information in the
form of bounding boxes and segmentation masks. In
our work, we use the OWL-ViT detector due to it’s
strong performance in the wild and publicly avail-
able implementation [43].

3. Preliminaries
Problem Set-Up Our goal is to allow robots to com-
plete instructions for tasks that involve novel ob-
ject categories that are not previously observed by
the robot’s camera. However, the object categories
are represented by the vast amount of data on the
internet, and hence, should be captured by vision-
language models trained on static data.

Formally, we assume that the robot, with image ob-
servations o ∈  and actions a ∈ , is provided with
a set of expert demonstrations robot collected via
teleoperation. Each demonstration corresponds to
a sequence of observation-action pairs {(oj , aj)}Tj=1
collected over a time horizon T , and is annotated
with a structured language instruction � for the task
being performed in the demonstration. To help fa-
cilitate object generalization, we assume that these
language instructions are structured as a combina-
tion of a template and a list of object descriptions
within that template. For example, for the instruc-
tion � =“move yellow banana near cup,”, the template
is “move X near Y,” and the object descriptions are
X =“yellow banana” and Y =“cup.”

All of the objects seen in the demonstrations are
drawn from a set robot, and our key objective is
to complete new structured language instructions
with a seen template but novel objects that are not in
robot, which also have novel object descriptions. In
aiming to complete this goal, our approach will lever-
age imitation learning and vision-language models,
which we brie�y review in the rest of this section.

Imitation Learning and RT-1 MOO will build
upon a language-conditioned imitation learning
setup. The goal of language-conditioned imitation
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Figure 2: MOO architecture overview: We build on the architecture of RT-1. We extract object location information
(represented as a small mask on the center of the bounding box for each detection) on the �rst frame of an episode.
When multiple objects are involved in an episode (such as “move can near plate,” we use a di�erent indicator value
for each object mask. The segmentation mask is concatenated channel-wise to the input image for each subsequent
frame of the episode. This requires modifying the E�cientNet to take in 4-channel input. Additionally, we remove the
language embedding for everything except the task so, for example, “pick apple” only receives a language embedding
for “pick” on the FiLM E�cientNet layers. The object speci�c information is only provided through the object instance
mask.

learning is to learn a policy � (a | � , o), where a is a
robot action that should be applied given the cur-
rent observation o and task instruction � . To learn a
language-conditioned policy � , we build on top of
RT-1 [24], a recent robotics transformer-based model
that achieves high levels of performance across a
wide variety of manipulation tasks. RT-1 uses behav-
ioral cloning [47], which optimizes � by minimiz-
ing the negative log-likelihood of an action a given
the image observations seen so far in the trajectory
and the language instruction, using a demonstration
dataset containing N demonstrations:
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Vision-Language Models In recent years, there
has been a growing interest in developing models
that can detect objects in images based on natural
language queries. These models, known as vision-
language models (VLMs), are enabling detectors to
identify a wide range of objects based on natural
language queries. Typically the text queries are tok-
enized and embedded in a high-dimensional space
by a pre-trained language encoder, and the image
is processed by a separate network to extract im-
age features into the same embedding space as the
text features. The language and image representa-
tions are then combined to make predictions of the
bounding boxes and segmentation masks. Given
a natural language query, q, and an image obser-
vation on which to run detection, o, these models
aim to produce a set of embeddings for the image
fi(o) with shape (height,width, feature dim) and an

embedding of the language query fl (q) with shape
feature dim such that logits = fi(o) ⋅fl (q) gives a logit
score map and is maximized at regions in o which
correspond to the queries in q. Each image embed-
ding location within fi(o) is also associated with a
predicted bounding box or mask indicating the spa-
tial extent of that object corresponding to fi(o). In
this work, we use the Owl-ViT detector [48], which
we discuss further in Sec. 4.3.

4. Manipulation of Open-World Ob-
jects (MOO)

In this section, we now describe our method, MOO,
that allows the robot to complete manipulation tasks
involving novel object categories that have not been
previously seen by the robot. The key goal of MOO
is to develop a policy that can leverage the visually-
grounded semantic information captured by pre-
trained vision-language models for generalization
to object types not in the policy training set. More
speci�cally, we aim to use the VLM to localize ob-
jects described in a given instruction, while allow-
ing the policy to complete the task using both the
instruction and the object localization information
from the VLM. MOO accomplishes this in two stages.
First, the current observation and the words in the
instruction corresponding to object(s) are passed to
the VLM to localize the objects. Then, the object
localization information and the instruction sans ob-
ject information are passed to the policy, along with
the observation, to predict actions.

The key design choice of MOO lies in how to repre-
sent object information encoded in VLMs and how to
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feed that information to the instruction-conditioned
policy. In the remainder of this section, we �rst
describe the design of these crucial aspects of the
method. Given these choices, we then provide an
overview of the model architecture and the training
procedure as well as describe practical implementa-
tion details that allows us to deploy MOO on real
robots.

4.1. Representing Object Information
To fully utilize the object knowledge encoded in the
VLMs, we need to pick a representation that can be
easily transferred to a text-conditioned control pol-
icy. We start with the task instruction � , which may
refer to previously unseen objects. We �rst split the
task instruction � into a verb v, which describes the
skill that the we want the robot to perform, and a
single noun or phrase X that describe the object of
interest. For instructions involving multiple objects,
we extract a sequence of such object descriptions
as X, Y , .... Note, that this is not a particularly re-
strictive assumption and it can be done in multiple
ways, including querying a large language model
to split the instruction into the two separate parts.
Inspired by RT-1 [24], in this work, we focus on �ve
di�erent types of skills: “pick X ,” “move X near Y ,”
“knock X over,“ “place X upright,“ and “place X into Y ,”
where X and Y are object descriptions, such as “red
cup” or “pink stu�ed elephant,” describing objects
in the scene. We exclude all of RT-1 tasks involving
drawers due to di�culties detecting drawers with
the current state-of-the-art VLMs. We extract the
object descriptions from the task commands using a
simple regular expression.

Equipped with an object descriptionX , we query a
VLM to produce a bounding box of the object of inter-
est with the prompt q = “An image of an X ”, and use
the resulting detection (if any) as conditioning of our
policy. To reduce the reliance of the exact segmen-
tation of the object dimensions, we select a single
pixel that is at the center of the predicted bound-
ing box as the object representation. In the case
of one object description, we use a one-hot single-
channel object mask with the value set to 1.0 at the
pixel of the object’s predicted location. In the case
of two object descriptions, we set the pixel value
of the �rst to be 1.0 and the second to be 0.5. This
design has two main advantages: �rst, it is a gen-
eral visual representation that can work with objects
of any size as long as they are visible in the image,

and second, it is compatible with a large selection
of vision methods such as bounding boxes or seg-
mentation masks as these can be easily transformed
into a single, object-centric pixel location. We care-
fully ablate other object representation choices in
the experiments.

Given the visual representation of the object and
the remaining description of the skill that the robot is
tasked to perform, we combine this task-relevant in-
formation with the current robot image to obtain the
full observation that is fed to the MOO policy, which
we describe in the next section. Importantly, this
approach can handle object descriptions that are not
previously seen in the robot’s demonstration data,
as long as it is su�ciently represented in the static
large-scale training data of the VLM. For any of such
unseen objects, we simply need to include a descrip-
tion of the object in the task command, e.g., “pick
green soda can.” Once the object description is trans-
lated into a pixel location by the VLM, the robot’s
policy trained on demonstration data only needs to
be capable of correctly interpreting the mask loca-
tion and how to physically manipulate the novel
object’s shape, rather than needing to also ground
the semantic object description.

4.2. Architecture and Training of MOO
We present the model architecture and information
�ow of MOO in Fig. 2. We start by extracting the
object descriptions from the language instruction,
which are then, together with the initial image, fed
into the VLM to output object locations in the im-
age. As described previously, the object information
is represented as a one-hot object mask where the
only pixels with non-zero values are in the center of
objects of interest.

Once we obtain the mask, we append it channel-
wise to the current image together with the recent
image history, which is passed into the RT-1 pol-
icy architecture [24]. We use a language model to
encode the language instruction that excludes the
object descriptions extracted earlier in an embedding
space of an LLM. The images are processed by an E�-
cientNet [49] conditioned on the text embedding via
FiLM [50]. This is followed by a Token Learner [51]
to compute a small set of tokens, and �nally a Trans-
former [52] to attend over these tokens and produce
discretized action tokens. We refer the reader to the
RT-1 paper for details regarding the later part of the
architecture. The action space corresponds to the
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Figure 3: Distribution of training objects for “pick” episodes and other skills. The data on the left was what was
used by [24]. We augmented RT-1 data with a large number of diverse pick episodes in order to demonstrate strong
generalization to unseen objects. Blue and green bars represent “pick” episodes and orange bars represent other tasks
like “move near” or “knock.” "Green" bars were the objects we randomly selected for "seen" evaluations. All randomly
selected "unseen" objects are shown to the right.

7-DoF delta end-e�ector pose of the arm (including
x, y, z, roll, pitch, yaw and gripper opening). The
entire policy network is trained end-to-end using
the imitation learning objective introduced in Equa-
tion 1 in Sec. 3. Importantly, the VLM used to detect
the objects of interest is frozen during training, so
that it does not specialize or over�t to the objects in
the robot demonstration data. The policy is trained
with this frozen VLM in the loop, so that the policy
can learn to be robust to errors made by the VLM
given other information in the image.

4.3. Practical Implementation
To detect objects in our robot images, we use the
Owl-ViT open-vocabulary object detector [43]. In
practice, we �nd that it is capable of detecting most
clearly visible real world objects without any �ne-
tuning, given a descriptive natural language phrase.
This is likely due to the billions of internet images
and associated text on which the model was trained.
The interface to the detector requires a natural lan-
guage phrase describing what to detect (e.g., “An
image of a small blue elephant toy.”) along with an
image to run the detection on. The output from the
model is a score map indicating which locations are
most likely to correspond to the natural language
description and their associated bounding boxes.
We select a universal score threshold to �lter detec-
tions. To detect our objects, we rely on some prompt-
engineering using descriptive phrases including the
color, size, and shape of objects, though most of our
prompts worked well on the �rst attempt. We share
the prompts in the appendix.

To make the inference time practical to run on

real robots, we extract the object information via
VLM only in the �rst frame of the episode. By doing
so, the majority of heavy computation is executed
only once at the very beginning and we can perform
real-time control for the entire episode. Since the
information is appended to the current observation,
we rely on the policy to �nd the corresponding object
in the current image if the object has moved since
the �rst timestep.

4.4. Training Data
We start with the demonstration data used by RT-
1 [24] covering 16 unique objects. However, despite
the use of the VLM for semantic generalization, we
expect that the policy will require more physical ob-
ject diversity in order to generalize to novel objects.
Therefore, we expand the dataset with additional
diverse “pick” data across a set of 90 diverse objects,
for a total of 106 object, as shown in Figure 4. We
choose to only expand the set of objects for the pick-
ing skill, since it is the fastest skill to execute and
therefore allows for the greatest amount of diverse
data collection within a limited budget of demonstra-
tor time.

Note that our additional set of 90 diverse objects
only appear in episodes in which the robot is per-
forming a “pick” task. All other tasks, such as “move
near” or “place into”, are learned from the original
16 objects in the RT-1 dataset. From our 90 diverse
objects, we randomly selected 13 objects on which to
perform a “seen” evaluation. We selected another 10
objects which were never seen during any training
episodes on which to perform an “unseen” evalu-
ation. We present the detailed object statistics in

6



Open-World Object Manipulation using Pre-Trained Vision-Language Models

Figure 4: We display objects used in this paper separated into three groups. The �rst group on the left is the RT-1
objects. These are most represented in the dataset (approximately 70% of all training data) and contains all skills
(“pick”, “move near”, “knock”, “place upright”, “place into”). The diverse objects in the middle appear only in “pick”
episodes and appear less frequently in the training data. All “seen" evaluations are conducted on objects selected from
the middle pile. The objects on the far right were held out from all training and are used only for evaluation purposes
(performance on these is reported as “unseen” throughout the text).

Fig. 3.

5. Experiments
Our experiments aim to answer the following ques-
tions:

1. To what extent does MOO generalize across ob-
jects for di�erent manipulation skills including
object categories never seen during training?

2. How well does MOO generalize beyond new
objects – how robust is it to new distractors,
backgrounds and environments?

3. Can the intermediate mask representation used
in MOO support new, non-linguistic input
modalities to specify the task?

4. How does the object generalization perfor-
mance of MOO scale with (a) the number of
training episodes, (b) the number of unique ob-
jects in the training episodes and (c) the size of
the model?

5. Can MOO be used for open-world navigation
and manipulation?

5.1. Experimental Setup
Seen and unseen objects. We collect training data
on a table-top environment across a broad set of 106
di�erent object types. A human operator manually
pilots the robot to complete the training tasks. We

evaluate performance on 13 “seen” objects in our
training data and report the performance as “seen.”
We hold out another 10 objects not present in any
of our training episodes and report performance on
these as “unseen.” Note that previous works often
focus on unseen combinations of previously seen
commands and objects (e.g. “pick an apple” even
though the training data contains “move an apple
into a bowl” and “pick a bowl”); we adopt a more
strict de�nition of unseen objects, where all of our
unseen object categories were not seen in the robot’s
training demonstration data at any point for any
task, therefore making our unseen performance a
zero-shot object generalization problem. Further-
more, we report results across a range of di�erent
environments that introduce novel textures, back-
grounds, locations, and additional open-world ob-
jects not present in the training data.
Evaluation details. We evaluate our method on
a set of tabletop tasks involving manipulating a di-
verse set of objects. We use a mobile manipulator
with a 7 degree-of-freedom arm and a two-�ngered
gripper (see Fig 5). Our experiments evaluate the
percent of successfully completed manipulation com-

1RT-1 (original data) has not actually seen any any objects
in the “seen” or “unseen” categories, since it was trained only
on RT-1 data.
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Figure 5: Image of our robot hardware and evaluation
setting.

Pick Other skills

Method Seen Unseen Seen Unseen
objects objects objects objects

RT-1 (our data) [24] 54 25 50 50
RT-1 (original data) 311 38 17

1 13
VIMA-like [25] 62 50 50 25
MOO (ours) 92 75 83 75

Table 1: Overall success rate of MOO and competitive
prior methods for seen and unseen objects across multiple
skills including pick, move-near, place-upright, knock-
over and place.

mands which include �ve skills: “pick”, “move near”,
“knock,” “place upright,” and “place into” across a set
of evaluation episodes. For “pick” episodes, success
is de�ned as (1) grasping the speci�ed object and
(2) lifting the object at least 6 inches from the table
top. For “move near” episodes, success is de�ned
as (1) grasping the speci�ed object and (2) placing
it within 6 inches of the speci�ed target object. For
“knock” episodes, success is de�ned as placing the
speci�ed object from an “upright” position onto its
side. “Place upright” tasks are the inverse of “knock”
and involve placing an object from its side into an
upright position. Finally, “place into” tasks involve
placing one object into another, such as an apple
into a bowl. To study object speci�city and robust-
ness, for all evaluation episodes, we include between
two to four distractor objects in the scene which
the robot should not interact with. For each evalu-
ation episode, we randomly scatter the evaluation
object(s) and the distractor objects onto the table.
There is no consistent placement of the target object

relative to the distractors. We repeat this process 21
times and report the performance. We present the
experimental setup in Figure 5.
Robustness evaluation details. In most of our
evaluations, the only di�erence from training
episodes are the newly introduced unseen objects;
however, we also investigate generalization to dif-
ferent furniture and backgrounds as visualized in
Figure 7. The �rst set of these di�cult evaluation
scenes introduces six evaluations across �ve addi-
tional open-world objects that correspond to var-
ious household items that have not been seen at
any point during training. The second set of dif-
�cult scenes introduces 14 evaluations across two
patterned tablecloths; these tablecloth textures are
signi�cantly more challenging to handle than the
plain gray counter-tops seen in the training demon-
stration dataset. Finally, the last set of di�cult scenes
include 14 evaluations across three new environ-
ments in natural kitchen and o�ce spaces that were
never present training demonstrations. These new
scenes simultaneously change the counter-top mate-
rials, backgrounds, lighting conditions, and distrac-
tor items.
Input modality demonstration details. Beyond
generalization to new objects and environments, we
explore the ability of MOO to incorporate object-
centric mask representations that are generated via
di�erent processes than the one used during training.
During training, an OwL-ViT generates mask visual
representations from textual prompts, as described in
Section 4.1. In contrast, we study whether MOO can
successfully accomplish manipulation tasks given
(1) a mask generated from a text caption from a gen-
erative VLM, (2) a mask generated from an image
query instead of a text query, or (3) a mask directly
provided by a human via a GUI. For each of these
cases, we implement di�erent procedures for gen-
erating the object mask representation, which are
then fed to the frozen MOO policy.
Baselines. We compare MOO to two prior meth-
ods: RT-1 [24] and a modi�ed version of VIMA [25],
which we refer to as “VIMA-like”. VIMA-like pre-
serves the cross-attention mechanism, but uses the
mask image as the prompt token and the current
image as state token. These modi�cations are nec-
essary because the original VIMA implementation
is tied to the action space of a UR5 robot and is not
applicable to our data and robot, i.e., our robot arm
moves in 6D and it has a gripper that can open and
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close continuously.

5.2. Generalization to Novel Objects
We start our experiments with investigating the ques-
tion: To what extend does MOO generalize across ob-
jects for di�erent manipulation skills including objects
never seen at training time? To answer this question,
we compare our method, MOO, to two other base-
lines: RT-1 [24] that uses an ImageNet-pretrained
E�cientNet tokenizer but does not use an additional
VLM to detect objects and VIMA-like [25] that also
utilizes object-centric representations but not in the
form of object pixels. These two baselines corre-
spond to common alternatives where the computer
vision data is used as a pre-training mechanism (as
in the case of RT-1) or object-centric information is
fed to the network in a di�erent way (as in the case
of VIMA-like).

The results of these experiments are in Table 1 and
example images of MOO execution are in Fig 6. We
present two versions of RT-1 – the original algorithm
trained on the dataset described in [24] as well as RT-
1 that is trained on the additional diverse pick data
introduced in this work for a fair comparison. Com-
paring MOO to the baselines on the pick tasks, we
can observe a substantial improvement over the seen
object performance as well as the unseen objects,
which in both cases reaches ∼ 50% improvement.
This can be explained by the fact that MOO is able
to correctly utilize an underlying VLM to �nd novel
objects that the robot has not interacted with and
it can incorporate that information more e�ectively
than the VIMA-like baseline. When comparing the
performance on seen objects for the skills other than
pick, we observe a slightly worse performance than
for the pick tasks. This is understandable given the
fact that the “Seen objects” for “Other skills” have
only been seen during the “pick” episodes as shown
in Fig. 3. This demonstrates the ability of MOO to
transfer the learned object generalization across the
skills so that the objects that have only been picked
can now be also used for other purposes. In addi-
tion, we observe signi�cant generalization of MOO
to unseen objects (i.e. unseen in any previous tasks,
including pick) that is at the same level as for unseen
objects for the pick skill, and 50% better than the
next best baseline.

5.3. Robustness Beyond New Objects
To further test the robustness of MOO, we ana-
lyze novel evaluation settings with signi�cantly in-

Figure 7: To test the robustness of MOO even further, we
evaluate on (a) additional novel objects, (b) challenging
texture backgrounds with two separate tablecloths that
are visually similar to objects in the scene, and (c) novel
environments that unseen during training.

creased di�culty and visual variation, which are
shown in Figure 7. To reduce the number of real
robot evaluations, we focus this comparison on the
picking skill.

The results are presented in Table 2. Across all
of these challenging evaluation scenes, we �nd that
MOO is signi�cantly more robust compared to a
VIMA-like baseline [25] and an RT-1 baseline [24].
This is particularly visible in the “Challenging Tex-
tures” eval, where our method is more than 7× better
than the baselines. This indicates that the use of
VLMs in MOO not only improves generalization to
new objects that the robot has not interacted with,
but also signi�cantly improves generalization to new
backgrounds and environments.

Method Open-World Challenging New
Objects Textures Environments

RT-1 (our data) [24] 17 7 29
VIMA-like [25] 50 7 7
MOO (ours) 67 50 43

Table 2: Robustness evaluations. MOO is able to handle
new objects, textures, and environments with substan-
tially greater success than prior methods.

5.4. Input Modality Experiments
To answer our third question (Can intermediate mask
representation used in MOO support new input modali-
ties to specify the task?), we perform a number of qual-
itative experiments testing di�erent input modalities.
We �nd that MOO is able to generalize to masks gen-
erated from a variety of upstream input modalities.
More importantly, these input modalities allow MOO
to correctly distinguish the target object even under
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move cold brew can near green cup

pick disinfectant wipes  

move small blue plate near whisk

pick wrist watch

move bird ornament near whisk

pick small orange rolling pin

Figure 6: Example images of our policy detecting and grasping objects not seen during training time. The object
detections are colored in correspondence to the text above the image, and the images are ordered left to right across
time.

scenarios outside the training distribution including
scenes with duplicate objects and clutter.

As the �rst qualitative example, we show that a
VLM such as PaLI [53] is able to infer what object
a human is pointing at, allowing OwL-ViT to gen-
erate an accurate mask of the object of interest. In
this case, PaLI generates the textual description of
what object the human is pointing at based on the ob-
served image, as shown in Figure 8(b). MOO utilizes
this description to generate the object mask using
OwL-ViT, resulting in an accurate representation of
the object of interest which is used as the input to
the policy.

Secondly, due to its multi-modal nature, OwL-ViT
can also used visual features instead of textual fea-
tures to generate a mask, enabling images of target
objects to be used to condition MOO, as shown in

Figure 8(c). This modality is especially useful in
cases where text-based mask generation is di�cult
to express due to the object being hard to describe in
natural language or when the target object is sourced
from the context of another scene. We �nd that MOO
is able to pick objects when shown images taken
from a similar scene or from images sourced from
the internet.

Finally, we show that MOO can interpret masks di-
rectly generated by humans, as shown in Figure 8(d).
Presented with a GUI of the current image, humans
are able to click on one or two pixels depending on
the desired task to create a mask. This capability
may be particularly useful in cases where text-based
and image-based mask generation is di�cult, such as
with many instances of an object or in the presence
of clutter.
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Rollouts

Point with Finger

Input Mask

Target Image Upload

Click on GUI

Text Instruction

“pick yellow 
highlighter”

(a)

(b)

(c)

(d)

Figure 8: We explore using various input modalities to generate the single-pixel object representations used by MOO.
(a) shows the standard mask generation process using OwL-ViT with a text instruction. (b) shows using a VLM to
generate a text caption, which is fed to OwL-ViT. (c) shows using an uploaded image to prompt OwL-ViT. (d) shows a
user directly providing a ground-truth mask via a GUI.

Dataset Filtering Pick

Objects Episodes per Object Seen objects Unseen objects

100% 100% 92 75
50% 100% 62 38
100% 50% 46 38
100% 10% 23. 0

Table 3: Performance of MOO relative to the amount of
data used for training. Both data scale and data diversity
are important.

This variety of input modalities showcases the
generality of the mask representation used in MOO
and points to interesting future avenues in the space
of human-robot interaction.

5.5. MOO Ablations
To answer the fourth experimental question, we con-
duct a number of ablations to assess the impact of
the size and diversity of our dataset and the scale
(in terms of number of parameters) of our model.
In Table 3 we vary both the number of unique ob-
jects in the training set (reducing it from 106 to 53
unique training objects) as well as the number of
total training episodes (reducing it by half – from
59051 training episodes to 29525) while keeping all
objects in the dataset. Note that cutting the num-
ber of objects from 106 to 53 also reduces the total
number of training episodes by about half. We aim
to vary these two axes to determine the impact of

Figure 9: Pick success vs. model size. We see continuous
improvements on both seen and unseen objects as we
increase the number of parameters of our model architec-
ture while keeping the data set size �xed. In comparison
to our main model, we scaled down layer widths and
depth by the same constant multiplier. We expect more
performance gains at larger model capacity, yet are cur-
rently unable to scale further due to real time inference
constraints on our robot.

the overall size of the dataset vs its object diversity
on the �nal results. Interestingly, we �nd similar
performance in both cases, especially for the unseen
objects. This indicates that it might be possible for
our method to achieve a similar level of object gener-
alization by scaling up the total amount of training
episodes without signi�cantly increasing the set of
unique objects.
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Figure 10: We present CoW-MOO, a system that combines an open-vocabulary object navigation by CoW [54] with
open-world manipulation by MOO. Full videos are shown on the project’s website.

In Fig. 9, we investigate the impact of scaling
the size of our model. We train to completion two
smaller versions of MOO where we scale down the
total number of layers and the layer width by a con-
stant factor. The version of MOO that we use in
our main experiments has 111M parameters, which,
for the purpose of this ablation, we then reduce by
an order of magnitude down to 10.2M and then by
5X again down to 2.37M. Comparing di�erent sizes
of the model, we �nd signi�cant drop o�s in both
“seen” and “unseen” object performance. We also
note that we could not make MOO larger than 111M
parameters without increasing the latency on robot
to an unacceptable level, but we expect continued
performance gains with bigger models if the speed
and compute requirements can be relaxed.

5.6. Open-World Navigation and Manipula-
tion

For the last experimental question, we consider
how such a system can be integrated with
open-vocabulary object-based navigation such as
NLMap [55] or CLIP on Wheels (CoW) [54]. We
implement a variant of CoW for pre-explored set-
ting and combine it with MOO, which we refer to
as CoW-MOO. CoW handles open-vocabulary nav-
igation to an object of interest, upon which MOO
continues with manipulating the target object. This
combination enables a truly open-world task execu-
tion, where the robot is able to �rst �nd an object
it has never interacted with, and then successfully
manipulate it to accomplish the task. We show ex-
ample qualitative experiments in Fig. 10 and in the
video of this system on the project’s website2.

6. Conclusion
In this paper, we presented an approach for leverag-
ing the rich semantic knowledge captured by vision-

2https://robot-moo.github.io/

language models in robotic manipulation policies.
Our evaluation showed that our approach substan-
tially improves the generalization of robot policies,
allowing robots to complete novel instructions in-
volving previously-unseen object categories and en-
abling greater performance with visually-complex
table textures and in novel environments.

Despite the promising results, MOO has multiple
important limitations. First, the object mask repre-
sentation used by MOO can uniquely identify an ob-
ject in a scene in many but not all cases. For example,
if an apple is placed on a plate, a mask centered on
the apple may be referring to the plate or the apple.
Exploring more expressive object representations is
an exciting direction for future work. Second, we ex-
pect the physical object generalization of the policy
to still be limited by the diversity of robot data. For
example, we expect that the robot may struggle to
grasp novel objects with drastically di�erent shapes
or sizes than those seen in the training demonstra-
tion data, even if the vision-language model can ac-
curately localize the object. Finally, MOO cannot
currently handle complex object descriptions involv-
ing spatial relations, such as “the small object to the
left of the plate.” Fortunately, we expect performance
on tasks such as these to improve signi�cantly as
vision-language models continue to advance moving
forward.
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A. Appendix
A.1. Prompts used
We use the following prompts to OWL-ViT detect our objects. All prompts were pre�xed with the phrase
“An image of a”.
7up can → “white can of soda”
banana → “banana”
black pen → “black pen”
blue chip bag → “blue bag of chips”
blue pen → “blue pen”
brown chip bag → “brown bag of chips”
cereal scoop → “cereal scoop”
chocolate peanut candy → “bag of candy snack”
co�ee cup → “co�ee cup”
coke can → “red can of soda”
coke zero can → “can of soda”
disinfectant pump → “bottle”
fork → “fork”
green can → “green aluminum can”
green cookies bag → “green snack food bag”
green jalapeno chip bag → “green bag of chips”
green sprite can → “green soda can”
knife → “knife”
orange can → “orange aluminum can”
orange plastic bottle → “orange bottle”
oreo → “cookie snack food bag”
pepsi can → “blue soda can”
popcorn chip bag → “bag of chips”
pretzel chip bag → “bag of chips”
red grapefruit can → “red aluminum can”
redbull can → “skinny silver can of soda”
rxbar blueberry → “small blue rectangular snack food bar”
spoon → “spoon”
swedish �sh bag → “bag of candy snack food”
water bottle → “clear plastic waterbottle with white cap”
white sparkling can → “aluminum can”
blue plastic bottle → “clear plastic waterbottle with white cap”
diet pepper can → “can of soda”
disinfectant wipes → “yellow and blue pack”
green rice chip bag → “green bag of chips”
orange → “round orange fruit”
paper bowl → “round bowl”
rxbar chocolate → “small black rectangular snack food bar”
sponge → “scrub sponge”
blackberry hint water → “clear plastic bottle with white cap”
pineapple hint water → “clear plastic bottle with white cap”
watermelon hint water → “clear plastic bottle with white cap”
regular 7up can → “can of soda”
lemonade plastic bottle → “clear plastic bottle with white cap”
diet coke can → “silver can of soda”
yellow pear → “yellow pear”
green pear → “green pear”
instant oatmeal pack → “�at brown pack of instant oatmeal”
co�ee mixing stick → “small thin �at wooden popsicle stick”
co�ee cup lid → “round disposable co�ee cup lid”
co�ee cup sleeve → “brown disposable co�ee cup sleeve”
numi tea bag → “small �at packet of tea”
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fruit gummies → “small blue bag of snacks”
chocolate caramel candy → “small navy bag of candy”
original redbull can → “can of energy drink with dark blue label”
cold brew can → “blue and black can”
ginger lemon kombucha → “yellow and tan aluminum can with brown writing”
large orange plate → “circular orange plate”
small blue plate → “circular blue plate”
love kombucha → “white and orange can of soda”
original pepper can → “dark red can of soda”
ito en green tea → “light green can of soda”
iced tea can → “black can of soda”
cheese stick → “yellow cheese stick in wrapper”
brie cheese cup → “small white cheese cup with wrapper”
pineapple spindrift can → “white and cyan can of soda”
lemon spindrift can → “white and brown can of soda”
lemon sparkling water can → “yellow can of soda”
milano dark chocolate → “white pack of snacks”
square cheese → “small orange rectangle packet ”
boiled egg → “small white egg in a plastic wrapper”
pickle snack → “small black and green snack bag”
red cup → “plastic red cup”
blue cup → “plastic blue cup”
orange cup → “plastic orange cup”
green cup → “plastic green cup”
head massager → “metal head massager with many wires”
chew toy → “blue and yellow toy with orange polka dots”
wrist watch → “wrist watch”
small orange rolling pin → “small orange rolling pin with wooden handles”
large green rolling pin → “large green rolling pin with wooden handles”
rubiks cube → “rubiks cube”
blue micro�ber cloth → “blue cloth”
gray micro�ber cloth → “gray cloth”
green micro�ber cloth → “green cloth”
small blending bottle → “small turqoise and brown bottle”
large tennis ball → “large tennis ball”
table tennis paddle → “table tennis paddle”
octopus toy → “purple toy octopus”
pink shoe → “pink shoe”
�oral shoe → “red and blue shoe”
whisk → “whisk”
orange spatula → “orange spatula”
small blue spatula → “small blue spatula”
large yellow spatula → “large yellow spatula”
egg separator → “large pink cooking spoon”
green brush → “green brush”
small purple spatula → “small purple spatula”
badminton shuttlecock → “shuttlecock”
black sunglasses → “black sunglasses”
toy ball with holes → “toy ball with holes”
red plastic shovel → “red plastic shovel”
bird ornament → “colorful ornament with blue and yellow confetti”
blue balloon → “blue balloon animal”
catnip toy → “small dark blue plastic cross toy”
raspberry baby teether → “red and green baby paci�er”
slinky toy → “gray metallic cylinder slinky”
dna chew toy → “big orange spring”
gray suction toy → “gray suction toy”
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teal and pink toy car → “teal and pink toy car”
two pound purple dumbbell → “purple dumbbell”
one pound pink dumbbell → “pink dumbbell”
three pound brown dumbbell → “brown dumbbell”
dog rope toy → “white pink and gray rope with knot”
�sh toy → “�sh”
chain link toy → “skinny green rectangular toy”
toy boat train → “plastic toy boat”
white coat hanger → “white coat hanger”

18


	Introduction
	Related Work
	Preliminaries
	Manipulation of Open-World Objects (MOO)
	Representing Object Information
	Architecture and Training of MOO
	Practical Implementation
	Training Data

	Experiments
	Experimental Setup
	Generalization to Novel Objects
	Robustness Beyond New Objects
	Input Modality Experiments
	MOO Ablations
	Open-World Navigation and Manipulation

	Conclusion
	Appendix
	Prompts used


